Блог
989 0

Проверка функции на четность. Как определять четные и нечетные функции

Нули функции Нулём функции называется то значение х, при котором функция обращается в 0, то есть f(x)=0.

Нули – это точки пересечения графика функции с осью Ох.

Четность функции Функция называется чётной, если для любого х из области определения выполняется равенство f(-x) = f(x)Четная функция симметрична относительно оси Оу

Нечетность функции Функция называется нечётной, если для любого х из области определения выполняется равенство f(-x) = -f(x).Нечетная функция симметрична относительно начала координат. Функция которая не является ни чётной,ни нечётной называется функцией общего вида.

Возрастание функции Функция f(x) называется возрастающей, если большему значению аргумента соответствует большее значение функции, т.е.

Убывание функции Функция f(x) называется убывающей, если большему значению аргумента соответствует меньшее значение функции, т.е.Промежутки, на которых функция либо только убывает, либо только возрастает, называютсяпромежутками монотонности. Функция f(x) имеет 3 промежутка монотонности:

Находят промежутки монотонности с помощью сервиса Интервалы возрастания и убывания функции

Локальный максимум Точка х 0 называется точкой локального максимума, если для любого х из окрестности точки х 0 выполняется неравенство: f(x 0) > f(x)

Локальный минимум Точка х 0 называется точкой локального минимума, если для любого х из окрестности точки х 0 выполняется неравенство: f(x 0) < f(x).Точки локального максимума и точки локального минимума называются точками локального экстремума.точки локального экстремума.

Периодичность функции Функция f(x) называется периодичной, с периодом Т, если для любого х выполняется равенство f(x+T) = f(x).

Промежутки знакопостоянства Промежутки, на которых функция либо только положительна, либо только отрицательна, называются промежутками знакопостоянства.

Непрерывность функции Функция f(x) называется непрерывной в точке x 0, если предел функции при x → x 0 равен значению функции в этой точке, т.е..

Точки разрыва Точки, в которых нарушено условие непрерывности называются точками разрыва функции.x 0- точка разрыва.

Общая схема для построения графиков функций

1. Найти область определения функции D(y).

2. Найти точки пересечения графика функций с осями координат.

3. Исследовать функцию на четность или нечетность.

4. Исследовать функцию на периодичность.

5. Найти промежутки монотонности и точки экстремума функции.

6. Найти промежутки выпуклости и точки перегиба функции.

7. Найти асимптоты функции.

8. По результатам исследования построить график.

Пример:Исследовать функцию и построить ее график: y = x 3 – 3x

1) Функция определена на всей числовой оси, т. е. ее область определения D(y) = (-∞; +∞).

2) Найдем точки пересечения с осями координат:

с осью ОХ: решим уравнение x 3 – 3x = 0

с осью ОY: y(0) = 0 3 – 3*0 = 0

3) Выясним, не является ли функция четной или нечетной:

y(-x) = (-x) 3 – 3(-x) = -x 3 + 3x = - (x 3 – 3x) = -y(x)

Отсюда следует, что функция является нечетной.

4) Функция непериодична.

5) Найдем промежутки монотонности и точки экстремума функции: y’ = 3x 2 - 3.

Критические точки: 3x 2 – 3 = 0, x 2 =1, x= ±1.

y(-1) = (-1) 3 – 3(-1) = 2

y(1) = 1 3 – 3*1 = -2

6) Найдем промежутки выпуклости и точки перегиба функции: y’’ = 6x

Критические точки: 6x = 0, x = 0.

y(0) = 0 3 – 3*0 = 0

7) Функция непрерывна, асимптот у нее нет.

8) По результатам исследования построим график функции.

Как вставить математические формулы на сайт?

Если нужно когда-никогда добавлять одну-две математические формулы на веб-страницу, то проще всего сделать это, как описано в статье : математические формулы легко вставляются на сайт в виде картинок, которые автоматически генерирует Вольфрам Альфа. Кроме простоты, этот универсальный способ поможет улучшить видимость сайта в поисковых системах. Он работает давно (и, думаю, будет работать вечно), но морально уже устарел.

Если же вы постоянно используете математические формулы на своем сайте, то я рекомендую вам использовать MathJax - специальную библиотеку JavaScript, которая отображает математические обозначения в веб-браузерах с использованием разметки MathML, LaTeX или ASCIIMathML.

Есть два способа, как начать использовать MathJax: (1) при помощи простого кода можно быстро подключить к вашему сайту скрипт MathJax, который будет в нужный момент автоматически подгружаться с удаленного сервера (список серверов ); (2) закачать скрипт MathJax с удаленного сервера на свой сервер и подключить ко всем страницам своего сайта. Второй способ - более более сложный и долгий - позволит ускорить загрузку страниц вашего сайта, и если родительский сервер MathJax по каким-то причинам станет временно недоступен, это никак не повлияет на ваш собственный сайт. Несмотря на эти преимущества, я выбрал первый способ, как более простой, быстрый и не требующий технических навыков. Следуйте моему примеру, и уже через 5 минут вы сможете использовать все возможности MathJax на своем сайте.

Подключить скрипт библиотеки MathJax с удаленного сервера можно при помощи двух вариантов кода, взятого на главном сайте MathJax или же на странице документации :

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега. По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Любой фрактал строится по определенному правилу, которое последовательно применяется неограниченное количество раз. Каждый такой раз называется итерацией.

Итеративный алгоритм построения губки Менгера достаточно простой: исходный куб со стороной 1 делится плоскостями, параллельными его граням, на 27 равных кубов. Из него удаляются один центральный куб и 6 прилежащих к нему по граням кубов. Получается множество, состоящее из 20 оставшихся меньших кубов. Поступая так же с каждым из этих кубов, получим множество, состоящее уже из 400 меньших кубов. Продолжая этот процесс бесконечно, получим губку Менгера.

Зависимость переменной y от переменно x, при которой каждому значению х соответствует единственное значение y называется функцией. Для обозначения используют запись y=f(x). У каждой функции существует ряд основных свойств, таких как монотонность, четность, периодичность и другие.

Рассмотри подробнее свойство четности.

Функция y=f(x) называется четной, если она удовлетворяет следующим двум условиям:

2. Значение функции в точке х, принадлежащей области определения функции должно равняться значению функции в точке -х. То есть для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = f(-x).

График четной функции

Если построить график четной функции он будет симметричен относительно оси Оу.

Например, функция y=x^2 является четной. Проверим это. Область определения вся числовая ось, а значит, она симметрична относительно точки О.

Возьмем произвольное х=3. f(x)=3^2=9.

f(-x)=(-3)^2=9. Следовательно, f(x) = f(-x). Таким образом, у нас выполняются оба условия, значит функция четная. Ниже представлен график функции y=x^2.

На рисунке видно, что график симметричен относительно оси Оу.

График нечетной функции

Функция y=f(x) называется нечетной, если она удовлетворяет следующим двум условиям:

1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции.

2. Для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = -f(x).

График нечетной функции симметричен относительно точки О - начала координат. Например, функция y=x^3 является нечетной. Проверим это. Область определения вся числовая ось, а значит, она симметрична относительно точки О.

Возьмем произвольное х=2. f(x)=2^3=8.

f(-x)=(-2)^3=-8. Следовательно, f(x) = -f(x). Таким образом, у нас выполняются оба условия, значит функция нечетная. Ниже представлен график функции y=x^3.

На рисунке наглядно представлено, что нечетная функция y=x^3 симметрична относительно начала координат.

Скрыть Показать

Способы задания функции

Пусть функция задается формулой: y=2x^{2}-3. Назначая любые значения независимой переменной x, можно вычислить, пользуясь данной формулой соответствующие значения зависимой переменной y. Например, если x=-0,5, то, пользуясь формулой, получаем, что соответствующее значение y равно y=2 \cdot (-0,5)^{2}-3=-2,5.

Взяв любое значение, принимаемое аргументом x в формуле y=2x^{2}-3, можно вычислить только одно значение функции, которое ему соответствует. Функцию можно представить в виде таблицы:

x−2−10123
y−4−3−2−101

Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3 ; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.

Еще функции возможно задать, используя графики. С помощью графика устанавливается какое значение функции соотносится с определенным значением x. Наиболее часто, это будет приближенное значение функции.

Четная и нечетная функция

Функция являетсячетной функцией, когда f(-x)=f(x) для любого x из области определения. Такая функция будет симметрична относительно оси Oy.

Функция являетсянечетной функцией, когда f(-x)=-f(x) для любого x из области определения. Такая функция будет симметрична относительно начала координат O (0;0).

Функция являетсяни четной,ни нечетнойи называетсяфункцией общего вида, когда она не обладает симметрией относительно оси или начала координат.

Исследуем на четность нижеприведенную функцию:

f(x)=3x^{3}-7x^{7}

D(f)=(-\infty ; +\infty) с симметричной областью определения относительно начала координат. f(-x)= 3 \cdot (-x)^{3}-7 \cdot (-x)^{7}= -3x^{3}+7x^{7}= -(3x^{3}-7x^{7})= -f(x).

Значит, функция f(x)=3x^{3}-7x^{7} является нечетной.

Периодическая функция

Функция y=f(x), в области определения которой для любого x выполняется равенство f(x+T)=f(x-T)=f(x), называетсяпериодической функциейс периодом T \neq 0.

Повторение графика функции на любом отрезке оси абсцисс, который имеет длину T.

Промежутки, где функция положительная, то есть f(x) > 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих выше оси абсцисс.

f(x) > 0 на (x_{1}; x_{2}) \cup (x_{3}; +\infty)

Промежутки, где функция отрицательная, то есть f(x) < 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих ниже оси абсцисс.

f(x) < 0 на (-\infty; x_{1}) \cup (x_{2}; x_{3})

Ограниченность функции

Ограниченной снизупринято называть функцию y=f(x), x \in X тогда, когда существует такое число A, для которого выполняется неравенство f(x) \geq A для любого x \in X.

Пример ограниченной снизу функции: y=\sqrt{1+x^{2}} так как y=\sqrt{1+x^{2}} \geq 1 для любого x.

Ограниченной сверхуназывается функция y=f(x), x \in X тогда, когда существует такое число B, для которого выполняется неравенство f(x) \neq B для любого x \in X.

Пример ограниченной снизу функции: y=\sqrt{1-x^{2}}, x \in [-1;1] так как y=\sqrt{1+x^{2}} \neq 1 для любого x \in [-1;1].

Ограниченнойпринято называть функцию y=f(x), x \in X тогда, когда существует такое число K > 0, для которого выполняется неравенство \left | f(x) \right | \neq K для любого x \in X.

Пример ограниченной функции: y=\sin x ограничена на всей числовой оси, так как \left | \sin x \right | \neq 1.

Возрастающая и убывающая функция

О функции, что возрастает на рассматриваемом промежутке принято говорить как овозрастающей функциитогда, когда большему значению x будет соответствовать большее значение функции y=f(x). Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значения аргумента x_{1} и x_{2}, причем x_{1} > x_{2}, будет y(x_{1}) > y(x_{2}).

Функция, что убывает на рассматриваемом промежутке, называетсяубывающей функциейтогда, когда большему значению x будет соответствовать меньшее значение функции y(x). Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значений аргумента x_{1} и x_{2}, причем x_{1} > x_{2}, будет y(x_{1}) < y(x_{2}).

Корнями функциипринято называть точки, в которых функция F=y(x) пересекает ось абсцисс (они получаются в результате решения уравнения y(x)=0 ).

а) Если при x > 0 четная функция возрастает, то убывает она при x < 0

б) Когда при x > 0 четная функция убывает, то возрастает она при x < 0

в) Когда при x > 0 нечетная функция возрастает, то возрастает она и при x < 0

г) Когда нечетная функция будет убывать при x > 0, то она будет убывать и при x < 0

Экстремумы функции

Точкой минимума функцииy=f(x) принято называть такую точку x=x_{0}, у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0} ), и для них тогда будет выполняться неравенство f(x) > f(x_{0}). y_{min} - обозначение функции в точке min.

Точкой максимума функцииy=f(x) принято называть такую точку x=x_{0}, у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0} ), и для них тогда будет выполняется неравенство f(x) < f(x^{0}). y_{max} - обозначение функции в точке max.

Необходимое условие

Согласно теореме Ферма: f"(x)=0 тогда, когда у функции f(x), что дифференцируема в точке x_{0}, появится экстремум в этой точке.

Достаточное условие

  1. Когда у производной знак меняется с плюса на минус, то x_{0} будет точкой минимума;
  2. x_{0} - будет точкой максимума только тогда, когда у производной меняется знак с минуса на плюс при переходе через стационарную точку x_{0}.

Наибольшее и наименьшее значение функции на промежутке

Шаги вычислений:

  1. Ищется производная f"(x) ;
  2. Находятся стационарные и критические точки функции и выбирают принадлежащие отрезку ;
  3. Находятся значения функции f(x) в стационарных и критических точках и концах отрезка. Меньшее из полученных результатов будет являтьсянаименьшим значением функции, а большее —наибольшим.
Добавить комментарий