Блог
759 0

Приборы и системы для определения гранулометрического состава сыпучих материалов. Способ определения гранулометрического состава сыпучих материалов Методы определения гранулометрического состава сыпучих материалов

Гранулометрический состав материала в зависимости от крупности частиц определяют одним из способов, приведенных в таблице 3.1.

Наиболее часто для контроля процессов грохочения, дробления и измельчения на обогатительных фабриках применяют ситовой анализ, поэтому в этой работе применяется именно он.

Таблица 3.1 - Методы определения гранулометрического состава угля

Ситовым анализом называют рассев на ситах сыпучего материала с целью определения его гранулометрического состава. Методы проведения ситовых анализов унифицированы.

Материал крупнее 25 мм рассеивается на качающихся горизонтальных грохотах и ручных ситах, а мельче 25 мм – на лабораторных ситах. Сетка лабораторного сита натянута на цилиндрическую обечайку диаметром 200 мм и высотой 50 мм. В верхнюю кромку обечайки для придания ей жесткости закатано проволочное кольцо. Нижняя кромка обечайки имеет несколько меньший диаметр, чем верхняя, что позволяет набирать комплекты сит, вставляя их одно в другое, и одновременно вести рассев материала на нескольких ситах. Верхнее сито закрывают крышкой, а нижнее вставляют в чашку-поддон, куда собирается подрешетный продукт последнего сита.

Пробы рассеивают сухим и мокрым способом в зависимости от крупности материала и необходимой точности ситового анализа. Если не требуется особой точности и материал не слипается, то применяют сухой способ рассева. Сита устанавливают сверху вниз от крупных размеров отверстий к мелким. Пробу засыпают на верхнее сито и весь набор сит встряхивают на механическом встряхивателе в течении 10-30 минут. Остаток на каждом сите взвешивают с точностью до 0,01 г на технических весах. Сумма всех полученных классов не должна расходиться более чем на 1 % с массой исходной пробы. Если это условие выдерживается, то сумму масс всех классов принимают за 100%. Выход классов получают делением массы каждого класса на общую их массу.

При наличии в пробе значительной доли мелкого материала и необходимости повышенной точности анализа пробу рассеивают мокрым способом. Ее засыпают на сито с отверстиями наименьшего размера, например 0,074 мм, и отмывают мельчайшие частицы (шлам) слабой струей воды или погружая сито в бак водой. Промывку ведут до тех пор, пока промывочная вода не станет прозрачной. Остаток на сите высушивают, взвешивают и по разности масс определяют массу отмытого шлама. Высушенный остаток рассеивают сухим способом на ситах, включая и самое мелкое, на котором оставался шлам. Подрешетный продукт этого последнего сита прибавляют к полученной ранее массе отмытого шлама.

Для точных анализов очень тонких пылей применяют микросита. Точность размера отверстий в микроситах значительно выше, чем в тканых сетках; отклонение от номинального размера ±2 мкм.

Результаты ситового анализа заносят в таблицу по соответствующим классам крупности. Вычисляют суммарные выхода, представляющие собой сумму выходов всех классов крупнее и мельче отверстий данного сита.

Введение

Порошкообразные материалы применяются во многих отраслях промышленности. Многие свойства порошков в значительной степени зависят от дисперсности. Анализ дисперсного состава является обязательным методом контроля во всех технологических процессах, связанных с изготовлением и переработкой порошкообразных материалов. В связи с этим становится понятным большое значение анализа дисперсного состава порошков для науки, техники и технологии.

На сегодняшний день во многих отраслях промышленности отмечается тенденция к использованию мелкодисперсных частиц различной природы. Без них не обходится современное производство композиционных материалов не только изготовленных для производственных целей, но также и для медицинских препаратов, химических веществ и т.д. Размер, форма и микрорельеф частиц сыпучих материалов, по мнению большинства исследователей, зависят не только от происхождения, и от способа их подготовки.

Известно, что физико-химические и технологические свойства различных составов на основе зерновых и дисперсных материалов зависят от числа контактов между частицами. Число контактов между твердыми частицами целиком зависит от размера, формы и микрорельефа частиц, а между твердыми частицами и связующим, кроме того, зависит от общей поверхности частиц, химической природы компонентов и энергетического состояния частиц. Прочность же индивидуальных контактов зависит от площади контакта, химической природы компонентов и их энергетического состояния.

1. Литературный обзор

1.1 Методы определения гранулометрического состава материала

В современной науке набралось достаточно большое количество методов способных определить гранулометрический состав практически любого материала, такие как:

Механическое разделение частиц, включающее ситовой и фильтрационный анализ (размер частиц > 50-100 мкм);

седиментационный анализ, включающий пофракционное осаждение, отмучивание, накопление осадка, отбор весовых проб (60-1 мкм);

динамические методы, основанные на сепарации в потоке в вертикальных сосудах и центробежных аппаратах (> 10 мкм);

оптические методы: в оптических микроскопах (0,1-1,0 мкм) и вэлектронных микроскопах (> 0,0006 мкм); электрический (0,5-50 мкм);

рентгеновский метод (< 1 мкм).

Ситовой анализ - метод определения гранулометрического, или фракционного, состава измельченных сыпучих материалов, этот метод применим для анализа крупнозернистых и кусковых материалов с размером частиц > 50-100 мкм. Точность ситового анализа зависит от количества мелких фракций и способа рассева (например: сухой, мокрый, с ультразвуковой обработкой и т.д.). Методика определения гранулометрического состава формовочных песков и смесей в стандартном наборе сит описана в ГОСТ 2138-84 «Пески формовочные».

Седиментационный анализ - это совокупность методов определения размеров частиц в дисперсных системах по установившейся скорости седиментации и параметрам седиментационно-диффузионного, или седиментационного, равновесия. Анализ позволяет определять как усреднённые характеристики дисперсности, так и распределение частиц дисперсной фазы по размерам или массам.

В основе методов седиментационного анализа лежит изменение скорости падения частиц в жидкой среде в зависимости от их величины. Классификация методов данного анализа включает в себя:

отмучивание;

измерение плотности столба суспензии;

пофракционное (дробное) оседание;

отбор весовых проб в разных объемах суспензий;

накопление осадка на чашечке весов;

электрофотоседиментометрия;

седиментометрия в поле центробежных сил.

Основные методы седиментационного анализа - это методы установившейся скорости седиментации и седиментационно-диффузионного, или седиментационного, равновесия; применяют также методы приближения к седиментационному равновесию и седиментации в градиенте плотности. Обычно используют метод установившейся скорости седиментации, причём искомые величины находят по изменению скорости накопления осадка, плотности столба суспензии (эмульсии), концентрации частиц на определённом уровне и т.д. Приборы для осуществления этого метода, работающие на принципах взвешивания или измерения гидростатического давления, называются седиментометрами. Седиментационный анализ в гравитационном поле широко применяется для определения дисперсного состава измельченных материалов, почв и грунтов, промышленных пылей. Так же этот анализ применяют и в поле центробежных сил, для определения молекулярной массы и однородности различных полимеров, в том числе биополимеров. В биохимии и молекулярной биологии седиментационный анализ позволяет выявить сложный состав различных клеточных структур, установить размеры вирусов, разделить липопротеиды с различным соотношением липидных и белковых компонентов.

Электрические методы определения гранулометрического состава позволяют добиться высокой точности размеров частиц за счет того, что определяемым параметром является объем частиц, т.е. учитывается их реальная форма. Счётчики Коултера широко используются в различных странах для анализа пылей и порошков с размером частиц 0,5-50 мкм. Методику определения гранулометрического состава электрическим методом, более подробно рассмотрим на принципе работы счётчика Коултера. В приборе (рисунок 1.1) измеряется импульс электрического напряжения, возникающий при прохождении частицы через отверстие в непроводящей перегородке (стенке ампулы). Импульс напряжения обусловлен увеличением сопротивления между электродами в момент, когда частица, увлекаемая потоком токопроводящей жидкости, проходит сквозь отверстие. Величина (амплитуда) импульса пропорциональна объёму частицы. Анализируемый материал, например суспензия, из стакана в ампулу засасывается благодаря опусканию ртути (под действием силы тяжести). Автоматический счёт числа импульсов и сортировка их по амплитудам позволяют получат кривые распределения частиц по размерам.

2 - стакан и ампула с микроотверстием, заполненные водной суспензией; 3 - ртутный манометр; 4 - электроды; 5 - контактная система; 6 - счётно-регистрирующего устройства

Рисунок 1.1 - Прибор Коултера

В этом же диапазоне размеров, что и прибор Коултера, хорошо работают ряд отечественных оригинальных электроустановок. Однако промышленностью такие установки до сих пор, к сожалению, не выпускаются. Выпускаемые промышленностью электрофотоседиментометры различных конструктивных вариантов являются эффективными анализаторами для материалов с размером частиц не < 2 мкм.

Оптические методы определения гранулометрического состава материалов основаны на принципе визуального распознавания частиц в отраженном свете под микроскопом, или более сложные методы, подразумевающие применение сложных установок основанных на законах дифракции света, на основе этих физических способов определения состава вещества, оптические методы подразделяются на две группы:

прямые (обычные оптические микроскопы, просвечивающие и растровые электронные микроскопы);

косвенные (лазерные гранулометры и другие, в которых используется принцип дифракции света).

У обычных оптических микроскопов хорошая разрешающая способность возможна только для частиц размером не менее 1 мкм. Электронная же микроскопия позволяет с высокой точностью определять размеры частиц < 1 мкм (вплоть до 6 Е), но анализ длительный и трудоемкий.

К числу наиболее перспективных методов исследования геометрических параметров формовочных материалов можно отнести седиментацирнный анализ, для реализации которого используется седиграфа.

Седиграф - анализатор размера частиц с использованием метода седиментации. Анализатор позволяет определять эквивалентный сферический диаметр частиц в диапазоне от 0,1 до 300 микрон. Метод седиментации имеет твердую репутацию одного из самых точных и надежных. Измеряя скорость, с которой частицы под действием силы тяжести опускаются в жидкости с известными свойствами. Седиграф (в частых случаях ЭВМ, получающяя и анализирующяя входящие данные с прибора), после определенного количества математических вычислений, определяет эквивалентный сферический диаметр частиц, удельную поверхность и т.д..

Седиментационные гранулометры (седиграфы), принцип действия которых основан на измерении степени осаждения суспендированных частиц в зависимости от их эквивалентных диаметров (по закону Стокса), в свою очередь используют седиментационный анализ..

1.2 Методы расчета основных параметров дисперсных частиц в вязкой среде

Различные дисперсные материалы в вязкой среде ведут себя по-разному, но всё они подчиняются одному закону, который в процессе седиментации отделяет глинистую составляющую из-за разной скорости падения зерен в вязкой среде (чаще вода, спирт, глицерин и т.д.) по средством сил притяжения магнитного поля Земли и законов Стокса.

Расчет скорости падения шара в вязкой среде основан на приравнивании между собой сил, направленных в противоположные стороны: силы тяжести R 1, направленной вниз, и силы сопротивления R 2, ей противоположной.

Сила тяжести определяется по общеизвестной формуле:

где, d - диаметр шара;

с(част)- удельный вес частицы;

с(ср)- удельный вес окружающей его среды;

g - сила тяжести.

Закон Стокса справедлив лишь для частицы свободно падающей (ламинарный режим) в вязкой среде под действием собственного веса, поэтому стоит учитывать вязкость самой этой среды в математическом расчете.

Вязкость (внутреннее трение)- это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой. При движении жидкости между ее слоями возникают силы внутреннего трения, действующие таким образом, чтобы уравнять скорости всех слоев. Возникновение этих сил объясняется тем, что слои, движущиеся с разными скоростями, обмениваются молекулами. Молекулы из более быстрого слоя передают более медленному некоторое количество движения (импульса), вследствие чего последний начинает двигаться быстрее, а первый - медленнее (по закону сохранения количества движения (импульса)).

Изменение количества движения говорит о наличии сил взаимодействия, в данном случае сил внутреннего трения. Действие этих сил проявляется в том, что со стороны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоряющая сила. И, наоборот, со стороны слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая сила.

При небольших скоростях движения жидкости сила внутреннего трения тем больше, чем больше площадь соприкосновения трущихся слоев, и зависит от того, насколько сильно различаются скорости этих слоев в направлении, перпендикулярном движению.

Движущуюся жидкость рассматривают как совокупность непрерывных плотно прилегающих друг к другу слоев, каждый из которых движется с постоянной скоростью. Слои могут иметь различную толщину и скользят относительно соседних, не перемешиваясь с ними. Такое течение жидкости называется ламинарным.

Отсюда вывод, что скорость падения шара (зерна) в вязкой среде подчиняется разным закономерностям в зависимости от того, происходит ли опускание зерен в условиях ламинарного или турбулентного режимов.

Для случая ламинарного режима выведенная общая формула скорости осаждения частиц в вязкой среде, имеет вид:

В таком виде обычно выражается формула Стокса.

Для случая турбулентного режима выведенная общая формула приобретает вид:

где, d - диаметр шара, см;

с(част)- удельный вес частицы, г/см2 (среднее из 2,6 и 2,65);

с(ср)- 2 (для воды 1,00);

g - сила тяжести, 981 см/с2;

з -

В таком виде обычно выражается формула Риттингера.

Температура воды должна быть в пределах 15-20°С. При невозможности применять воду в указанных температурных границах необходимо делать пересчеты согласно таблице 1.

Таблица 1.1 - Влияние температуры на изменение условий отмучивания

ХарактеристикаТемпература, ◦С01020304050 Вязкость, мпз Время отстаивания, с Глубина осаждения, мм0,017 500 750,015 400 950,01 300 1250,008 240 1550,006 180 2100,005 150 250

Вода должна быть средней жесткости. При проведении анализов в разных районах из-за разной жесткости воды были полечены разные результаты. Влияние жесткости воды и концентрации едкого натра связано с изменением полноты отмывания. Примерное влияние концентрации NaOH на количество отмываемых глинистых составляющих приведено в таблице 1.1 (по опытам П.П. Берга).

Таблица 1.2 - Влияние концентрации NaOH на количество отмываемых глинистых составляющих,%

ХарактеристикаКоличество NaOH00,10,20,41,0 Количество глинистых составляющих Относительное увеличение количества глинистых составляющих24,77 0,025,10 1,3525,60 3,3525,99 5,1025,77 4,05

Все выше перечисленные методики расчётов, при учёте ламинарного режима осаждения частиц в вязкой среде, дают нам возможность расчета основных параметров частицы исследуемого материала, и посредством установления аналитической связи между диаметром зерна и его поверхностью (принимая за сферическую поверхность), мы можем рассчитать параметры всего материала, такие как: количество всех зерен материала в определенном объёме, вес всех зерен и суммарную поверхность материала в целом. Для этого нам необходимо более близко рассмотреть геометрию частиц материалов, и влияние генезиса и механоактивации на геометрические параметры частиц сыпучих материалов.

1.3 Влияние механоактивации на геометрические параметры дисперсных материалов

Сыпучие материалы, при рассмотрении микроструктуры под микроскопом, имеют ряд разнообразных дефектов, конечно же, для удобства расчетов диаметра зерна и удельной суммарной поверхности, геометрию исследуемого материала принимают шарообразной или сферической.

разнообразность форм зерен (шарообразные, квадратные, пластинчатые, разнообразные сложные формы иногда не подвластные даже человеческому воображению);

однородность поверхности (округлые, угловатые, острые и т.д.);

дефекты поверхности (карьеры на поверхности частицы, сквозные отверстия, кратеры, углубления и прочее) и т.д.

Такие дефекты не только увеличивают суммарную поверхность исследуемого материала, но ставят под сомнение принцип рассмотрения материала как однородную субстанцию.

Характеристика частиц каким-либо линейным размером (часто называемая диаметром) удобна и общепринята. Вполне однозначно линейный размер описывает только геометрически правильные частицы - шар, куб и другие, которые можно описать одним параметром. Во всех остальных случаях необходимо дополнительное определение того, что подразумевается под линейным размером. При прямых наблюдениях, когда возможна геометрическая интерпретация, размером считают, например, среднее из трех измерений - длины, ширины и толщины, или длину стороны эквивалентного по объему куба. Определение размеров возможно при использовании косвенных методов. Так, в случае седиментационных измерений за диаметр частиц принимают диаметр сферических частиц той же плотности, оседающих со скоростью исследуемых частиц, при измерении поверхности - диаметр сферы, поверхность которой равна поверхности частицы.

Так же, как и размер, определения формы частиц в большинстве случаев условны. Принято разделять частицы, форма которых близка к сферической, на вытянутые похожие на цилиндр или призмы, и угловатые, похожие на многогранники с неровными краями, и др. Сильно вытянутые нитеобразные частицы характеризуют отношением длины к ширине, плоские - отношением наименьшей толщины к ширине. Отношение наибольшего линейного размера к наименьшему используется как показатель (или фактор) формы. Сравнение численных значений фактора формы имеет смысл лишь для геометрически подобных частиц при строгом определении измеряемых параметров. Наиболее наглядное представление о форме частиц может быть получено прямым визуальным наблюдением их с помощью микроскопа. Возможно также измерение формы как отношения скоростей оседания в вязкой среде изучаемых частиц и равных им по массе сферических частиц того же материала. Применяются и другие косвенные определения. С уменьшением размеров частиц численное выражение фактора формы становится все более затруднительным.

Дисперсностью порошка называют характеристику размеров и формы частиц, составляющих порошок. Дисперсность выражается функцией распределения и некоторой величиной, средней для всех частиц порошка, а также удельной поверхностью порошка. Размеры частиц могут быть определены одним из способов, описанных выше. Например, распределение может быть выражено как функция объемов, поверхностей или одного из линейных размеров. Наиболее распространенным является распределение по (условному) диаметру.

Удельной поверхностью порошка называют отношение суммарной поверхности частиц к их весу. Легко видеть, что для порошка из неодинаковых частиц средняя удельная поверхность частиц, вообще говорящие равна удельной поверхности порошка.

Именно поэтому определение размеров частиц и, следовательно, гранулометрического состава порошков по седиментационным данным базируется на законах движения твердых сферических частиц в вязкой среде. Обязательными условиями применимости этих законов является безграниченность и сплошность среды, а также возможность рассматривать движение каждой частицы независимо от других. Практически эти условия означают, что уравнения движения частиц в жидкости или газе строго справедливы лишь для сильно разбавленных суспензий и газовых взвесей, твердые частицы которых велики по сравнению с размерами молекул среды и длинами их свободного пробега, а расстояния между частицами и удаление от стенок сосуда значительно превышает их размеры.

Частица, помещенная в вязкую и плотную среду, движется под действием сил тяжести (в случае седиментации в гравитационном поле). Ее скорость полностью определяется действием этих сил и сопротивлением среды - вязким и гидродинамическим:

w=6рзrv + (рr 2 D 1 v 2 )/3 = (6рз 2 Re)/D 1 + (2рRe D 1 )/3

где, r - радиус сферы;

v - скорость перемещения частицы относительно среды;

з - вязкость среды; - число Рейнольдса.

В области малых чисел Рейнольдса (Re << 1) можно пренебречь значением второго из слагаемых, а в области больших (Re >> 1) - можно пренебречь первым.

Наибольшее практическое значение имеет область применимости закона Стокса (Re < 0,2), поскольку седиментационному анализу подвергаются обычно очень мелкие частицы, скорости движения которых невелики. Применимость закона Стокса со стороны малых чисел Рейнольдса ограничена, в принципе, требованием сплошности среды. Однако практически эта граница для седиментации в жидкости определяется требованием к скорости движения малых частиц, которая должна быть достаточно велика, чтобы время полного оседания не превышало по крайней мере нескольких часов. В противном случае малейшие температурные градиенты, вызывающие конвективные потоки жидкости, существенно изменяют ход седиментации.

Скорость падения в жидкости частиц неправильной формы отличается от скорости движения сферических частиц равной массы. Разница в скорости зависит также от ориентации анизометричных частиц относительно направления их движения. Однако вряд ли имеется практическая возможность учета формы частиц. Поэтому порошки с резко анизометричными частицами исследовать седиментационным путем вообще не рекомендуется. Во всех практических определениях принимают за размер частиц диаметр эквивалентной по скорости падения сферической частицы, т.е. явно или неявно считают частицы сферическими, оговариваясь, что размеры являются седиментационными (или стоксовскими).

Для уменьшения геометрической разнообразности, и уменьшения геометрических дефектов частиц исследуемого материала, проводят активацию этого материала или измельчение. При этом стоит не забывать одно из главных положений механоактивации, оно заключается в том, что «может быть механоактивация без измельчения, но не может быть измельчения без активации».Отсюда следует, что, во-первых, нельзя разделить измельчение и активацию: любое измельчение есть активация, так как под действием внешних сил увеличивается запас энергии измельчаемого вещества хотя бы за счет увеличения поверхностной энергии; во-вторых, любой измельчающий аппарат является механоактиватором.

Механоактивация - активирование твердых веществ механической обработкой. Измельчение в ударном, ударно-центробежном или центробежном режимах приводит к накоплению структурных дефектов, уменьшению кривизны поверхности, фазовым превращениям и даже аморфизации кристаллов, что влияет на их химическую активность. Механоактивация - следствие создания в некоторой области твердого тела напряжений с последующей их релаксацией. Часто объединяют термины механоактивация, механохимия, трибохимия, хотя между ними существует разница. Механоактивация - процесс образования более химически активного вещества предварительной механической обработкой. Механохимия - предмет изучения химических превращений в веществе или в смеси веществ в процессе механической обработки. Трибохимия - раздел механохимии, в котором исследуют химические и физико-химические изменения твердых веществ при трении. Поскольку механическое разрушение твердых тел всегда сопровождается сдвигом, деформацией и трением.

После процесса механоактивации, материал приобретает новые необходимые нам качества:

образование активных центров на свежеобразованной поверхности;

изменение реакционной способности;

на поверхности твердого тела формируется поверхностный слой, в котором концентрируется «избыточная» энергия;

изменение свободной энергии вследствие механохимической активации обусловлено изменением суммы поверхностной и внутренней энергии;

изменение внутренней энергии за счет дефектов структуры превышает прирост поверхностной энергии;

улучшение поверхности активированной поверхности;

приближение к сферической и овальной форме.

1.4 Цели и задачи исследования

Анализ литературных данных показал мне необходимость улучшения способа определения диаметра частиц дисперсных материалов седиментационным способом, в замен ситового метода, отличающегося меньшей точностью, громоздкостью и отличающийся потерями при проведении эксперимента. Поэтому цель своей работы могу сформулировать как: разработка методики определения основных геометрических параметров формовочных материалов в зависимости от режимов их механоактивации в процессе наноструктурирования.

В процессе достижения данной цели исследовательской работы необходимо выполнить ряд задач, с которыми я столкнусь во время нахождения оптимальных конструкторских решений уже имеющихся седиментационных гранулометров, и во время оптимизации самого процесса получения данных и их обработки. Одной из главных задач работы является исследование зависимости геометрической активности частиц материалов от режимов активации и наноструктурирования.

2. Методическая часть

.1 Оборудование для активации материалов и механосинтеза композиций

Для механоактивации материалов и механосинтеза композиций использовали планетарно-центробежную мельницу АГО-2У, которая успешно используются:

для тонкого и сверхтонкого размола неорганических, твердых и сверхтвердых материалов;

для механохимической активации неорганических материалов;

для смешивания сухих материалов и суспензий;

для извлечения трудно растворимых материалов в среде растворителя;

для синтеза новых материалов, смесей, катализаторов.

Общий вид мельницы показан на рисунке 2.1, технические характеристики приведены в таблице 2.1.

Таблица 2.1 - Технические характеристики АГО-2

ПараметрЗначение параметраРежим работыдискретныйМаксимальный исходный размер частиц материала, мм3Количество и объем барабанов, мл2Ч135Мелющие телашарыДиаметр мелющих тел, мм6-10Охлаждающая жидкостьводаМощность электродвигателя, кВт1,5Масса, кг95

Рисунок 2.1 - Лабораторная мельница-активатор АГО-2У

Планетарно-центробежная мельница по сравнению с аналогами имеет следующие преимущества:

высокая надежность: отсутствие подшипниковых узлов в приводе барабанов как в самой нагруженной части мельницы многократно увеличивает ресурс, исключает необходимость периодической замены подшипников;

быстрое сверхтонкое измельчение и активация материалов - сверхтонкий помол за несколько минут за счет высокой энергонапряженности, возможность получения наноразмерных и наноструктурированных материалов;

возможность регулирования условий эксплуатации в широком диапазоне - возможность обработки материалов в защитной среде, возможность обработки агрессивных веществ, удобное регулирование основных рабочих параметров.

2.2 Современное оборудование, используемое для седиментационного анализа материалов

Из огромного количества методов определения основных параметров исследуемых материалов, для данной работы я выбрал метод седиментационного анализа, принцип действия которого основан на измерении степени осаждения суспендированных частиц в зависимости от их эквивалентных диаметров (по закону Стокса).

Метод седиментационного анализа широко применяется во многих областях научной сферы, начиная от медицины и заканчивая промышленностью. Этот метод завоевал мировое признание за простоту, недежность и точность получаемых данных, поэтому каждый год огромное количество учёных пытаются усовершенствовать данный способ гранулометрического анализа веществ и материалов.

Седиграф (или седиментационный гранулометр) - анализатор размера частиц с использованием метода седиментации. Анализатор позволяет определять эквивалентный сферический диаметр частиц в диапазоне от 0,1 до 300 микрон. Измеряя скорость, с которой частицы под действием силы тяжести опускаются в жидкости с известными свойствами (согласно закону Стокса), седиграф, после определенного количества математических вычислений, определяет эквивалентный сферический диаметр частиц.

Анализ литературы показал, что все седиграфы по своему конструктивному решению условно можно разделить на две большие группы:

ручные (не автоматические седиграфы, произведенные из стекла или пластика; предусматривают последующий математический расчет на ЭВМ);

автоматические седиграфы (ультразвуковой гранулометр PSM System - 100 (США), электроимпульсный кондуктометрический СФЭК-62 (CCCP), оптический (лазерный) фирмы «Specfield Ltd» (США), микрометрический с индуктивным преобразованием «Миллиметр» (CCCP) и др.).

На данный момент самым совершенным седиментационным гранулометром (седиграфом), является австрийский аппарат SediGraph 5120 (СЕДИГРАФ 5120) (исходя из характеристик аппарата, новизны, области применения, легкости применения и обслуживания и т.д.). 5120 (СЕДИГРАФ 5120) - это современный, полностью автоматический анализатор размера частиц с использованием метода седиментации. Анализатор позволяет определять эквивалентный сферический диаметр частиц в диапазоне от 0,1 до 300 микрон. Масса частиц определяется напрямую с помощью рентгеновской адсорбции. Измеряя скорость, с которой частицы под действием силы тяжести опускаются в жидкости с известными свойствами (согласно закону Стокса). Прибор сочетает этот известный метод с новыми технологиями, позволяя получить воспроизводимую и точную информацию о распределении частиц по размерам за несколько минут.5120 имеет ряд особенностей, предназначенных для получения воспроизводимых результатов и делающих его удобным для использования и обслуживания, не смотря на конструктивную сложность прибора, которая частично представлена на рисунке 2.2.

а - общий вид прибора; б - прибор со снятой лицевой крышкой

Рисунок 2.2 - Прибор SediGraph 5120

Автоматизированные гранулометры, такие как австрийский SediGraph 5120, имеют ряд преимуществ по сравнению с не автоматизированными седиграфами (ручными):

·точные данные, исключающие антропогенный фактор;

·легкость и не трудоемкость работы;

·исключение дополнительных математических расчётов;

·система напоминания о профилактическом обслуживании;

·компьютерный контроль температуры смесительной камеры;

·гибкая и легко настраиваемая система выдачи отчетов о проведенных анализах и т.д.

Одним из больших недостатков современных автоматизированных седиментационных гранулометров является их относительная не надежность. Но с ежегодным улучшением материалов, из которых изготавливаются эти приборы, в скором времени, недостаток «не надежность» будет сведён к нулю, но это отразится на и так не маленькой цене седиграфа.

На сегодняшний день высокая стоимость приборов не позволяет многим научно-исследовательским лабораториям приобрести такую аппаратуру, поэтому они проводят определение гранулометрического состава материала на более простых установках, подчистую изготовленных своими руками. Стоимость таких установок в 100-200 раз меньше, чем у автоматизированных седиментационных грануломеров, но надежность исполнения и цена компенсируют недостаток антропогенного фактора и погрешности измерения.

3. Экспериментальная часть

.1 Разработка установки для исследования материалов

Для определения основных параметров частиц исследуемого материала (номинального диаметра), и установления последующей аналитической связи между диаметром зерна и его поверхностью (принимая за сферическую поверхность), мы можем рассчитать параметры всего материала, такие как: количество всех зерен материала в определенном объёме, вес всех зерен и суммарную поверхность материала в целом.

Изменению в конструкции подверглись патрубки установки, они расположены под углом 300 от горизонтальной поверхности прибора, для более полного и безприпятственного слива суспензии, а дифференцируемые длины патрубков предусматривают удобность слива (что на практике помогает уменьшить потери изучаемого материала, и увеличить чистоту эксперимента). Краны слива максимально приближены к рабочей цилиндрической поверхности установки, для выполнения условий седиментационного анализа, и не допуска возможности осаждения измеряемого вещества, во время свободного падения частиц в вязкой среде, внутрь этих патрубков, что в свою очередь уменьшает погрешность измерений. Установка исполнена из химически устойчивого пластика, что предусматривает её надежность, износостойкость, практичность, номинальную легкость, легкость в использовании и в подготовке к работе (рисунок 3.1).

Рисунок 3.1 - Седиграф

дисперсный седиментационный гранулометрический установка

По сравнению данной установки с другими её аналогами, она имеет ряд преимуществ:

практическое отсутствие потерь исследуемого материала и погрешности измерения;

простота изготовления (возможность изготовления в домашних условиях);

низкий расход исследуемого материала;

прочность, практичность (по сравнению со стеклянными аналогами);

максимальное выполнение условий седиментационного анализа.

3.2 Оборудование для фильтрации материалов и композиций

Для фильтрации материалов мы используем установку, состоящую из следующих компонентов химической посуды и вспомогательных материалов, таких как:

Колба Бунзена - толстостенная колба коническая по форме и предназначенная для фильтрования. Эта колба со шлифом, или специальной притертой крышкой. В верхней части имеется специальный отросток для создания соединения с вакуумным насосом или с отдельной линией вакуума. Колба специально приспособлена для проведения работ при пониженном давлении;

Воронка Бюхнера - применяются в химических лабораториях для фильтрования растворов при помощи фильтровальной бумаги под уменьшенным давлением (вакуумом). Для этого воронку Бюхнера вставляют в колбу Бунзена на резиновой пробке. Изготовляются по ГОСТ 9147-80;

Фильтры обеззоленные, d = 12,5 см (в индивидуальной упаковке). Маркированные «синей лентой», что обозначает их фильтрационную способность, то есть, отделение от растворов мелкокристаллических осадков;

Водоструйный насос - вакуумный насос, использующий для создания разрежения струи воды, которая течёт сквозь него. Создаваемое разрежение определяется давлением паров воды при данной температуре, и, в случае использования холодной водопроводной воды, составляет около 20 мм рт.ст. Водоструйные насосы изготавливаются из стекла, стали, пластмасс и широко используются в лабораторной практике. Достоинство - простота устройства, небольшие габариты, надёжность работы; недостатки - низкий коэффициент полезного действия и затраты большого количества вспомогательной воды под давлением;

Данная установка (рисунок 3.2) работает на принципе вакуумной фильтрации, создавая разрежение воздушной среды, путем пропускания воды через камеру водоструйного насоса.

Рисунок 3.2 - Фильтрационная установка в сборке

В результате, собранная установка помогает нам в кратчайшие сроки отфильтровать необходимые материалы для замера веса, тем самым увеличивая полезное время работы в целом. Так же стоит отметить другие весомые достоинства:

Высокая производительность установки;

Возможность регулирования толщины осадка и скорости движения фильтрования ткани;

Универсальность, надежность и простота обслуживания.

3.3 Экспериментальные данные, полученные при исследовании материалов

Номенклатура сыпучих материалов, которые исследуют на седиментационных грануломеров, очень велика и охватывает многие области научных сфер. В литейном производстве, перечень материалов участвующих в процессах литья (как в качестве наполнителя или связующего, для красок или смесей) непомерно огромен. Поэтому в данной работе я представлю экспериментальные данные по перечню определённых материалов, чаще всего используемых в литейном производстве, с целью определения основных геометрических параметров исследуемых материалов, методом седиментационного анализа.

Материалы, исследуемые в данной работе, можно подразделить на ты группы: исходные, композиции на основе бентонита и композиции на основе графита (ГЛС-2). Исходные материалы:

) Графит (ГЛС-2) (Курейское месторождение);

) Пылевидный кварц (ПК);

) Глинозем (Al2O3);

) Периклаз (MgO);

) Бентонит (Казахский);

) Бентонит (Черногорский природный);

Композиции на основе бентонита:

) Бентонит (Черногорский природный) + сода;

Композиции на основе графита (ГЛС-2):

) ГЛС-2(А) + ПК(А);

) ГЛС-2(А) + MgO(А);

) ГЛС-2(А) + Al2O3(А).

На основе полученных данных проводим математический расчёт диаметра частицы, установив аналитическую связь, рассчитываем удельную поверхность одного зерна материала и удельную поверхность всего материала в целом при определенном весе материала. Методика расчёта:

где, d - диаметр шара, см;

с(част)- удельный вес частицы, г/см2 (среднее из 2,6 и 2,65);

с(ср)- удельный вес окружающей частицу среды, г/см2 (для воды 1,00);

g - сила тяжести, 981 см/с2;

з - вязкость воды (берётся с учётом температуры воды).

В таком виде выражается формула Стокса. Для случая ламинарного режима скорости осаждения частиц в вязкой среде.

Для различных объемов, расчёт скорости осаждения будет различным, потому что окончательная высота падения частицы в вязкой среде для каждого объема будет разной.

где, t - время проведения эксперимента, с (10 мин, 3 ч, 7 ч, 24 ч);

а - высота седиментационного прибора, мм;

b - высота, которую преодолевает частица, до конца эксперимента (40 мм, 80 мм, 120 мм, 160 мм).

Определение окончательной скорости осаждения частицы, помещенной в вязкую и плотную среду, движущую под действием сил тяжести. Ее скорость полностью определяется действием этих сил и сопротивлением среды - вязким и гидродинамическим:

w=6рзrv + (рr 2 D 1 v 2 )/3 = (6рз 2 Re)/D 1 + (2рRe D 1 )/3

Где, r - радиус сферы, мм;

v - скорость перемещения частицы относительно среды, см/с;

з - вязкость среды, мпз;

Re - число Рейнольдса,

D 1 - плотность дисперсионной среды, гр/см3.

Приравнивая уравнения (5) и (6), и решая его относительно диаметра частицы (d), получаем:

Зная диаметр (d ) вещества, рассчитываем удельную поверхность частиц (F ) и общее количество всех зерен материала (N ):

На основе имеющихся расчетных формул, и полученных в ходе исследовательской работы экспериментальных данных, можно рассчитать среднее значение диаметра частиц (распределенных по исследуемым объемам) общее расчетное значение поверхности всех зерен и среднее значение диаметра частиц всего вещества в целом.

Таблица 3.11 Расчетные данные по исходным материалам

Объем, мл.Графит (ГЛС-2)Пылевидный кварц (ПК)Глинозем (Al2O3)Периклаз (MgO)Исх.Акт.Исх.Акт.Исх.Акт.Исх.Акт.Средний диаметр частиц материала, мкм.100-75 75-50 50-25 25-00,41 0,83 3,41 16,860,23 0,79 3,2 15,20,42 0,65 3,3 32,00,4 0,65 2,6 30,53- - - 3,5- - 0,39 1,8- - - 3,3- - 0,27 1,5Средневзвешенное значение диаметра частиц материала, мкм.Итог14,08412,24530,21227,3253,491,7693,31,474Поверхность всех зерен материала, см2.Итог31129,736332,619028,928295,671167,99003867592,187386

Таблица 3.12 Расчетные данные по композициям на основе графита (ГЛС-2).

Объем, мл.ГЛС-2(А) + Al2O3(А)ГЛС-2(А) + MgO(А)ГЛС-2(А) + ПК(А)Исх.Акт.Исх.Акт.Исх.Акт.Средний диаметр частиц материала, мкм.100-75 75-50 50-25 25-0- 0,42 1,83 3- 0,401 1,5 2,8- 0,29 1,49 2,90,15 0,25 1,23 2,890,19 0,31 1,41 6,550,15 0,14 1,11 4,92Средневзвешенное значение диаметра частиц материала, мкм.Итог2,9422,7122,8032,7266,3814,468Поверхность всех зерен материала, см2.Итог169738,9218292,56177408,2226261,9125662,3544049,07

Таблица 3.13 Расчетные данные по бентонитам и композициям на основе бентонитов.

На основе полученного массива расчетных данных различных дисперсных материалов, чаще всего используемых в литейном производстве, можно сделать ряд выводов о геометрических параметрах исследуемых материалов, о среднем диаметре частиц материалов и о характере влияния механоактивации в процессе наноструктурирования. Во всех случаях исследования материала на седиментационном гранулометре (седиграф), наблюдается тенденция, что после механоактивации материала, средний диаметр частиц уменьшился, что положительно отражается на качестве материала (что для литейных покрытий, например, является увеличение прочности, уменьшение покровного слоя, увеличение кроющей способности, плотности и вязкости). Для исходных материалов это порядка 12-15%, для композициий на основе графита 6-8% (для Al2O3 и MgO) и до 30% (для ПК). Бентониты и композиции на основе бентонитов, умеют среднее значение уменьшения среднего диаметра частиц вещества, порядка 35-45% от исходного значения. Повсеместное уменьшение диаметра материалов, прошедших механоактивацию, по сравнению с исходными материалами, ведет к увеличению общей расчетной поверхности материала, такая тенденция прослеживается для всех исследуемых в данной работе материалов.

Все тенденции, которые прослеживаются в расчетных данных, по сравнению с данными полученными ситовым методом и другими аналитическими данными, мы можем с уверенностью утверждать что расчет, полученный в ходе проведения исследовательской работы верен, и новые конструктивные решения седиментационного гранулометра, минимизирующие потери материала в ходе работы, низкий расход исследуемого материала, и максимальное выполнение условий седиментационного анализа, привели к получению адекватных данных.

3.4 Выводы

На основании проделанной работы можно сделать следующие выводы:

Разработана установка для оценки среднего размера частиц седиментационным методом;

Предложена методика расчета среднего размера частиц и расчетной поверхности исследуемых материалов;

Исследованы влияние режимов активации на геометрические параметры материалов:

Исходные материалы: графит (ГЛС-2) (Курейское месторождение); пылевидный кварц (ПК); глинозем (Al2O3); периклаз (MgO).

Бентониты и композиции на основе бентонитов: бентонит (Казахский); бентонит (Черногорский природный); бентонит (Черногорский природный) + сода.

Композиции на основе ГЛС-2: ГЛС-2(А) + ПК(А); ГЛС-2(А) + MgO(А); ГЛС-2(А) + Al2O3(А).

Исследовано влияние режимов активации на геометрические параметры композиций.

4. Безопасность и экологичность работы

4.1 Анализ условий проведения эксперимента

Во время проведения эксперимента по влияния режимов активации и наноструктурирования дисперсных материалов на геометрическую активностьих частиц образуются определенные факторы, которые считаются вредными. Перечень опасных и вредных факторов приведен в таблице 4.1.

Таблица 4.1 - Перечень опасных и вредных факторов, возникающих при проведении экспериментальной работы

Наименование операцииНаименование оборудованияНаименование вредных факторовТепловыделенияЭлектрический токШумПыльВибрацияПриготовление суспензийСедиграф---+-Сушка суспензийСушильный шкаф++-+-Математические расчетыЭВМ-+---

В работе используется такие материалы, как графиты Курейского месторождения, вода, искусственный графит (отхода различных предприятий по краю), пылевидный кварц, жидкое стекло, бентонит, так же все перечисленные выше материалы с различной степенью активации. Все используемые материалы не является опасными для работы, и не токсичны.

К вредным факторам, возникающим при работе, относятся пыль, повышенная влажность, электрический ток. Все перечисленные факторы могут привести как к производственным заболеваниям или к осложнениям уже имеющихся заболеваний, так и к травмам непосредственно.

4.2 Характеристика помещения для проведения работы

Местом для проведения исследовательской работы является плавильно-литейный зал кафедры «Литейное производство» ИЦМиМ «СФУ». Цех имеет прямоугольную форму длиной 22,5 м и шириной 9 м с высотой 7 м. Общая площадь лаборатории составляет 202,5 м2. В лаборатории имеется помещение, оснащенное всем необходимым оборудованием для разработки и проведения экспериментов.

Освещение цеха: естественное - боковое (через 4 окна общей площадью 12м2 (высота - 1,9 м и ширина - 1,6 м)) и искусственное - общее (22 люминесцентных лампы мощностью 36 Вт; 10 натриевых ламп высокого давления мощностью 250 Вт).

Вентиляция помещения осуществляется за счет естественного воздухообмена при проветривании через открытые форточки, а также с помощью вытяжной вентиляционной системы.

В лаборатории предусмотрена система противопожарной сигнализации, и имеются необходимые средства пожаротушения: огнетушитель - ОУ-2 и ящик с песком.

Помещение отапливается центральным водяным отоплением. В зимний период поддержание оптимальной температуры 15-18 °С, в помещении производится центральным водяным отоплением.

Для оказания медицинской помощи в лаборатории находится аптечка первой медецинской помощи.

4.3 Мероприятия по защите от опасных и вредных факторов

Электробезопасность. Электробезопасность - система сохранения жизни и здоровья работников в процессе трудовой деятельности, связанной с влиянием электрического тока и электромагнитных полей. Электробезопасность включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия.

К организационным мероприятиям относятся инструктажи и обучение безопасным методам труда, проверка знаний, правил безопасности и инструкций, допуск к проведению работ, оформленный заполнением соответствующего наряда, контроль работ ответственным лицом.

Технические мероприятия предусматривают отключение установки от источника напряжения, снятие предохранителей и другие меры, обеспечивающие невозможность ошибочной подачи напряжения остающихся под напряжением токоведущих частей, рабочих мест и др.

Действие электрического тока на человека носит многообразный характер. Проходя через организм, электрический ток вызывает термическое, электролитическое и биологическое воздействие.

В лаборатории электрооборудование и установки являются потенциальными источниками поражения электрическим током. Во избежание этого необходимо содержать оборудование в исправном состоянии, а при обслуживании его выполнять требования правил безопасности при эксплуатации электроустановки и местных инструкций по технике безопасности. Для обеспечения техники безопасности в лаборатории соблюдаются следующие правила:

1. Все питающие кабели уложены в металлические трубки, которые заземлены в общий контур.

2. Все установки включаются общим рубильником, в котором имеются плавкие предохранители на случай короткого замыкания. Одной из основных мер защиты работающего от электрического тока является заземление и зануление оборудования.

Для обеспечения электробезопасности применяют отдельно или в сочетании следующие технические способы и средства:

·Защитное заземление - это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением при замыкании на корпус и по другим причинам.

·Задачей защитного заземления является устранение опасности поражения током в случае прикосновения человека к корпусу и другим токоведущим металлическим частям электроустановки, находящимся под напряжением (ГОСТ 12.1.030 - 01).

·Зануление - это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам.

·Задача состоит в устранении опасности поражения человека током в случае прикосновения его к корпусу и другим нетоковедущим металлическим частям электроустановки, находящимся под напряжением (ГОСТ 12.1.030-01).

·Изоляция токоведущих частей - исправность изоляции, основное условие обеспечения безопасности эксплуатации и надежного элктроснабжения электроустановок. Применяют несколько видов изоляции токоведущих частей электроустановок: рабочую, дополнительную, двойную и усиленную.

·Электрозащитные средства - это персональные и перевозимые изделия, служащие для защиты людей, обслуживающих электроустановки, от поражения электрическим током, воздействия электрической дуги и электромагнитного поля. По назначению защитные средства делят условно на изолирующие, ограждающие и вспомогательные.

Защита от пыли. Пыль - это мельчайшие частицы твердого или жидкого вещества, находящегося в воздухе во взвешенном состоянии. Пыль может быть разных видов и классифицируется по следующим признакам: по роду вещества, из которого состоят частицы, по степени дисперсности (измельчения), по степени вредности на организм человека и взрывоопасности.

По размерам частиц (степень дисперсности) пыль подразделяют на три группы: собственно пыль (размеры частиц больше 10-3 см), «облако» (размеры частиц 10-3-10-5 см) и «дым» (размер частиц менее 10-5 см). По состоянию пыль различают взвешенную в воздухе (аэрозоль) и осевшую. Опасность пыли тем больше, чем меньше размер пылинок, так как такая пыль дольше остается в качестве аэрозоля в воздухе и глубже проникает в легочные каналы.

Пыль по ее происхождению подразделяют также на три основные группы: органическую (древесная, угольная, торфяная и т.п.), неорганическую - металлическую (стальная, медная, чугунная) и минеральную - (песчаная, известковая, цементная). Смешанная пыль содержит компоненты третьей и второй групп (например, пыль, получающаяся от точки инструментов). Кроме того, пыль также различается по ее физическим свойствам: твердости, растворимости, удельной массе, размерам и формам частиц, воспламеняемости и пр.

Вредное действие пыли может проявляться в виде механических повреждений кожи, слизистой оболочки, дыхательных путей, глаз, легких, а также в виде токсического (отравляющего) и химического воздействия. Длительное вдыхание пыли (цемента, гипса, электросварочного аэрозоля) вызывает у человека стойкие хронические заболевания легких, которые носят название пневмокониозов. В зависимости от рода пыли пневмокониозы имеют различные виды: силикоз, силикатоз и антракоз (угольная и алюминиевая пыль и др.). Вредность пыли для организма зависит от количества ее в воздушной среде, размеров частиц, химического состава и степени растворимости. В организм человека проникают частицы пыли главным образом размером не более 2 мкм. Попадая на кожу, пыль проникает в сальные и потовые железы и нарушает терморегуляцию организма. Количество пыли измеряется ее массой, выраженной в миллиграммах на 1 м3 воздуха.

Средства защиты от пыли разделяются на общие (коллективные) и индивидуальные. К общим средствам защиты от пыли в первую очередь относятся механизация процессов дробления, помола, просеивания, транспортирования, выгрузки пылящих материалов, изменение в некоторых случаях технологического процесса, например замена процесса сухого шлифования камней и прочих деталей на мокрые, сухого дробления материалов на бегунах мокрым процессом, применение герметического оборудования, размещение и производство пылящих процессов в отдельных изолированных помещениях и устройство отсосов пыли от мест ее возникновения (например, устройство местной и общей вентиляции, устройство кожуха точильного инструмента и пылеприемника на пути пылевого потока). Хороший эффект дает поливка пыльных дорог смесью воды с 20%-ным раствором хлорной извести, что снижает запыленность воздуха до 1,8-2,6 мг/м3.

Средства индивидуальной защиты от пыли - это применение непроницаемой противопылевой спецодежды, противогазов, пневмошлемов, пневмомасок, респираторов, защитных очков и т.п., а также соблюдение личной гигиены.

Требования безопасности при работе с технологическим оборудованием. Все детали, узлы и механизмы, доступные для случайного прикосновения, должны ограждаться сплошными или сетчатыми кожухами. Надежное ограждение не только обеспечивает безопасность оператора, но и позволяет увеличить скорость выполнения отдельных операций, повысить производительность труда. В нужных случаях ограждение может быть использовано для усиления конструкции машины, отсоса вредных газов или пыли от рабочих частей ее, смазки и других целей.

Ограждение должно быть достаточно долговечным, прочным, стойким по отношению к механическим воздействиям (износу, удару), коррозионно- и огнестойким, не затруднять выполнение рабочих операций. Ограждение ни в коем случае не должно иметь защемляющих щелей, режущих кромок, острых углов и т.п.

В конструкциях установок предусматриваются предохранительные тормозные устройства, фиксирующие узлы и механизмы и предупреждающие их самопроизвольное перемещение в результате случайного внешнего воздействия.

Управление установками осуществляется с помощью кнопочных станций выносного типа или кнопочных станций, установленных непосредственно на машинах. При монтаже кнопочных станций учитывают необходимость обеспечения хорошего обзора рабочей зоны. Конструкция кнопочной станции должна исключать возможность случайного пуска машины, аварийные и рабочие кнопки должны быть сдублированы.

Противопожарная профилактика.Во избежание пожара в цехе предусмотрены следующие меры: обтирочные материалы хранятся в плотно закрытых металлических ящиках в дали от нагревательных устройств, для пожаротушения в цехе имеются огнетушители ОХП - 10, ящики с песком, щиты с противопожарным инвентарем, гидранты с рукавом длиной 20 метров. Цех оснащен противопожарной сигнализацией.

Во избежание пожара в лаборатории предусматриваются следующие мероприятия:

·Установки пожарных щитов с набором пожарного инвентаря;

·Предусмотрены установки углекислотных огнетушителей, предназначенных для тушения различных материалов и установок до 1000В. ОУ-5, ОУ-8. Химический огнетушитель ОХП-10 установленных для тушения загораний твердых материалов. Здание оборудовано системой электропожарной сигнализацией (ЭПС), предназначенной для обнаружения начальной стадии пожара и сообщения о месте его возникновения.

·В лаборатории предусмотрено проведение противопожарного инструктажа, который проводят в 2 этапа. Сначала первичный инструктаж на рабочем месте, который проводит инженер по охране труда, а затем повторный на рабочем месте, который проводит начальник лаборатории.

·Обтирочные материалы находятся в металлических ящиках с плотно закрывающимися крышками. Использованная ветошь по окончанию смены убирается с рабочего участка.

4.4 Характеристика освещения

Организация рационального освещения производственных помещений, рабочих мест имеет большое значение для создания оптимальных условий труда. При достаточном освещении повышается производительность труда, снижается утомляемость и травматизм, обеспечивается психологический комфорт. При неудовлетворительном освещении работающий человек плохо видит и с трудом ориентируется в производственной обстановке. Успешное выполнение задания в этом случае требует дополнительных условий и большого зрительного напряжения.

Для освещения помещений используют естественный свет и свет от источников искусственного освещения

Естественное освещение в лаборатории регламентируется по нормам СНиП 23-05-95.

Нормированное значение коэффициента естественного освещения (еn) (КЕО) определяется по формуле:

n = е н · m n,

где, е н - табличное значение КЕО, определяемое в зависимости от точности зрительной работы и системы освещения, равное 0,5;

m - коэффициент светового климата (для условий города Красноярска), равное 0,9.

Следовательно, коэффициент естественного освещения:

e n = 0,5 · 0,9 = 0,45.

Расчетное значение КЕО (е р ) при боковом освещении рассчитывают по формуле:

где So, Sn - площадь окон и пола, м2;

зo - световая характеристика окна, равная 15;

К з - коэффициент запаса, равный 1,3;

К зд - коэффициент, учитывающий затенение окон противоположными зданиями, равный 1,4.

Находим необходимое количество окон:

S 0 = (e p · S n · з 0 · К зд · К з ) / (100 · r 1 · ф0),

S 0 = (0,45 · 200 · 15 · 1,4 · 1,3) / (100 · 2 · 0,5)=24,57 м2·

Учитывая, что в лаборатории активно используется искусственное освещение, появляется необходимость в представлении его характеристики, которая приведена в таблице 4.2.

Таблица 4.2 - Характеристика искусственного освещения лаборатории

Наименование рабочего местаРазряд зрительных работСистема освещенияНорматив, лкИсточник светаЛабораторный столVIОбщая20022 люминесцентных лампы мощностью 36 Вт; 10 натриевых ламп высокого давления мощностью 250 Вт

4.5 Расчет вытяжного шкафа

Так как в работе используется большое количество порошковых материалов, то все работы необходимо проводить в вытяжном шкафу.

Ниже приводится расчет вытяжного шкафа с механической вытяжкой.

Для удаления из шкафа избытков тепла или вредных примесей при механической вытяжке количество отводящего воздуха рассчитывают по формуле:

L ухм = F·V,

где F - площадь всасывающего сечения, м2, равный 1,5;

V - скорость удаляемого воздуха, м/с, скорость принимается в зависимости от вида вредных выделений по графикам, для порошковых материалов составляет 0,2 м/с.

L ухм = 1,2 · 0,2 = 0,24 м3/с.

Высота вытяжного шкафа рассчитывается по формуле:

где оих+вых - сумма всех сопротивлений прямой трубы на пути движения воздуха, равный 0,05;

d - диаметр прямой трубы, равный 0,5 м;

h - высота открытого проема воздуха, равная 0,5 м.

Следовательно, принимаем высоту вытяжного шкафа, равную Н = 1,6 м.

.6 Охрана окружающей среды

Раздел охраны окружающей среды рассмотрим на основе «Графитовой фабрики», это предприятие специализируется на производстве графита в Красноярске, на нём внедрены установки по улавливанию и утилизации вредных веществ. Это значит, что еще до направления вредных веществ на очистку, они поступают в эти установки, улавливаются и возвращаются в процесс. Такая работа ведет к сокращению потребления реактивов, используемых в технологических процессах, а значит, и к сокращению вредных выбросов в окружающую среду.

С целью предотвращения загрязнения окружающей среды и обеспечения соответствующих требованиям санитарно-технических норм условий в производственных помещениях, на промплощадке и прилегающих к заводу жилых районах отходящие газы от технологического оборудования подвергаются очистке на газоочистных сооружениях, состоящих из 6-ти электрофильтров и 8 пенных аппаратов на аффинажном производстве и скрубберов.

Основные пыле-газоочистные сооружения осуществляют двух-ступенчатую очистку по семи ингредиентам: хлористому водороду, хлору, оксидам азота и углерода, диоксиду серы, аммиаку и хлористому аммонию.

Газы и пыль от источников их образования (реакционные аппараты, баки, фильтры, печи цехов аффинажного производства) под действием разрежения, создаваемого вентиляторами ВЦТ-20, транспортируются по газоходам, газовым тоннелям, электрофильтрам, пенным аппаратам и очищаются от примесей. Очищенный газ выбрасывается в атмосферу через вентиляционную трубу.

В газовых трактах под действием гравитации происходит очистка газа от пыли с размерами частиц 1-100 мкм, осаждающихся на поверхности тракта. В них осаждаются также частицы солей, образующихся вследствие реакции нейтрализации кислых газов (хлористый водород, хлор, оксиды азота и серы). Ввиду недостатка щелочных газов для полной нейтрализации с пульсационных колонн цеха очистки стоков в газовый тракт принудительно по отдельному газоходу подаются газы, содержащие избыточный аммиак, что повышает степень очистки газов за счет образования в газовом тракте хлористого аммония.

Поскольку в газовых трактах концентрация индивидуальных примесей ниже пределов воспламенения и взрываемости и они разбавлены парами воды, при нейтрализации исключаются бурное взаимодействие и образование взрыво-пожароопасных веществ.

Очистка газов в электрофильтрах. В электрофильтры из газовых трактов по газоотводящим патрубкам диаметром 1400 мм поступает газ, содержащий 64-80 мг/м3 пыли. Проектная скорость движения газа в активной части электрофильтра 0,5 м/с. Пройдя через газораспределительные решетки дырчатого типа, газ равномерно распределяется по активной части электрофильтра.

Электрофильтры КМ-21 расположены параллельно по ходу газа. Очистка газов состоит из трех основных стадий: зарядка частиц пыли и аэрозолей, осаждение заряженных частиц на осадительных электродах, удаление пыли с электродов.

Зарядка и осаждение частиц производится с помощью электродной системы, соединенной с источником высокого напряжения. В качестве источника высокого напряжения используются полупроводниковые трансформаторно-преобразовательные агрегаты АТФ-1000, ОПМД-600, АТПОМ-600. В зависимости от мощности агрегата он может включаться на одну или две секции электрофильтра.

При подаче на электродную систему постоянного тока высокого напряжения (50-55 кВ) между электродами возникает электрическое поле, обуславливающее создание коронного разряда, необходимого для зарядки частиц, поступающих с очищаемым газом и их осаждения после зарядки.

Частицы пыли, встречая на своем пути ионы, адсорбируют их, заряжаются и под действием сил электрического поля движутся к осадительным электродам.

Удаление осевшей на электродах пыли производится периодической промывкой, во время которой слой пыли разрушается и в виде пульпы выводится из фильтра по сливным трубопроводам в зумпф на технологический участок.

После окончания промывки, до открытия газа, электрофильтр выводится на рабочий режим.

При установлении рабочего режима на электрофильтр подается газ для очистки. Увлажнение газов производится путем подачи пара в скрубберную часть электрофильтра. Давление пара в линии контролируется манометром.

Максимальное количество одновременно отключенных электрофильтров - два фильтра.

Степень очистки газа от пыли (80-95%) ежесуточно определяется службой технического контроля.

Очистка газов на пенных аппаратах. Очищенные электрофильтрами газы собираются в общий коллектор и транспортируются для дальнейшей санитарной очистки в восьми пенных аппаратах, включенных параллельно.

В пенные аппараты газ поступает через раздаточный коллектор.

Пенный аппарат - титановый сосуд, внутри которого установлены три горизонтальных решетки. Для очистки газа на решетки подается орошающая жидкость из циркуляционных баков насосами. Емкость каждого бака - 30 м3.

Расход орошающей жидкости на 1 аппарат - 44 м3/ч. содержание соляной кислоты - 11 г./л.

Жидкость подается на верхнюю решетку аппарата и через переливные устройства поступает на две расположенные ниже решетки.

В качестве орошающей жидкости используется пожарохозяйственная вода.

Контроль за количеством орошающей жидкости, подаваемой на каждый пенный аппарат, ведется оператором по приборам, установленным на пульте оператора.

Переливные устройства выполнены таким образом, что на решетках при встречном движении газа создается пенный слой жидкости высотой 90-140 мм.

В жидком слое многократно увеличивается контакт между газом и жидкостью, благодаря чему происходит поглощение (абсорбция) вредных примесей, газов, частиц хлористого аммония орошающей жидкости.

После пенных аппаратов очищенный газ поступает в сборный коллектор, всасывающий коллектор вентиляторов ВЦТ-20 и выбрасывается в атмосферу через вентиляционную трубу, высота трубы 120 метров.

Очистка сточных вод. Промышленные сточные воды «Графитовой фабрики» подвергаются физико-химической очистки от примесей металлов и солей до установленных норм в блоке очистных сооружений, после чего по объединенной промышленно-фекальной канализации сбрасываются на городские очистные сооружения биологической очистки.

Проектная мощность очистных сооружений 870 м

Гранулометрический состав и методы его определение

Обрабатываемое на обогатительной фабрике минеральное сырье (руда, горная масса) и получаемые из него продукты обогащения представляют собой смесь зерен неправильной формы различного размера. Распределение зерен по классам крупности характеризует гранулометричесский состав исходного сырья и продуктов обогащения.

Для определения гранулометрический используют следующие способы:

измерение крупных кусков по трем взаимно перпендикулярным направлениям;

ситовый анализ - рассев на наборе сит на классы различной крупности.

Ситовой анализ крупных материалов- продуктов дробления- производится вручную на наборе сит или с помощью автоматического вибрационного гранулометра; ситовый анализ мелких материалов- продуктов измельчения- производится на механическом анализаторе (встряхивателе);

седиментационный анализ - разделение материала по скорости падения частиц различной крупности в водной среде для материала крупностью от 40(50) до5 мкм (для более мелких материалов применяют седиментацию в центробежном поле).

микроскопический анализ - измерение частиц под микроскопом и классификация их на группы в узких границах определенных размеров (для материалов крупностью от 50мкм до десятых долей микрометра).

Гранулометрический состав материала позволяет на обогатительных и сортировочных фабриках определять выходы различных классов, производительность дробильных и измельчительных аппаратов, осуществлять контроль процессов грохония, дробления, измельчения. Чаше всего гранулометрический состав исходного сырья и продуктов обогащения определяется посредством ситового анализа.

Ситовый анализ заключается в рассеве пробы материала на нескольких ситах с различными стандартными размерами отверстий заданного модуля. Ситовый анализ материала крупнее 25 мм производится вручную на наборе сит или на качающихся горизонтальных грохотах. Материал крупностью менее 25 мм рассеивается на лабораторных ситах. В зависимости от крупности материала и необходимой точности ситового анализа пробы рассеиваются сухим или мокрым способом. Если позволяет крупность и материал не подвержен слипанию, применяется сухой способ рассева на механическом встряхивателе, сита в котором устанавливают друг над другом сверху вниз от крупных размеров отверстий к мелким. Пробу засыпают на верхнее сито, закрывают крышкой и встряхивают в течение 10-30 мин. Под нижним ситом имеется поддон, куда собирается наиболее мелкий класс (подрешетный продукт последнего сита).

После рассева пробы каждый класс крупности взвешивается на технических весах. Выход каждого класса определяется делением массы класса на общую массу пробы. Для тонко измельченного материала применяют мокрое просеивание. Для этого пробу засыпают на сито с мелкими отверстиями и производят отмывку мельчайших частиц многократным погружением сита в бачок с водой или промывкой материала на сите слабой струей воды. Отмывку производят до тех пор, пока промывная вода не станет прозрачной. Оставшийся на сите материал высушивают и взвешивают. По разности определяют массу отмытого шлама Высушенный материал повторно рассеивают сухим способом на ситах, включая и самое мелкое, на котором производилась отмывка шлама. Определив массу подрешетного продукта последнего сита, ее прибавляют в полученной ранее массе отмытого шлама. Результаты ситового анализа приводятся обычно в виде таблиц или графиков. Суммарные выходы «по плюсу» (+) или «по минусу» (-) представляют собой сумму выходов всех классов соответственно крупнее или мельче отверстий данного сита.

По данным ситовых анализов строится в прямоугольной системе координат характеристики крупности. На оси координат откладывают суммарный выход классов (в процентах), на оси абсцисс - размеры отверстий сит в миллиметрах. На основании суммарных выходов материала крупнее диаметра отверстий сита строится кривая «по плюсу», меньше - «по минусу». Сумма выходов по обеим кривым должна всегда равняться 100%. Поэтому обе кривые характеристик» по плюсу» и «минусу» являются зеркальным отражением одна другой. Они всегда пересекаются в точке, соответствующей суммарному выходу50%. Точка пересечения кривой с осью абсцисс показывает максимальный размер куска материала в данной пробе.

Результаты ситового анализа суммарные характеристики» по плюсу» бывают вогнутыми, выпуклыми и прямолинейными.

гранулометрический шлам зерно сырье

Вогнутая кривая указывает на преобладание мелких зерен в пробе, выпуклая - крупных, прямолинейная характеристика свидетельствует о равномерном распределении классов крупности.

Вогнутые кривые характерные для хрупких полезных ископаемых, выпуклые - для крепких руд. По суммарной характеристике крупности можно определить выход любого класса. Для этого находят на оси абсцисс размер нужного класса, и из этой точки перпендикулярно к оси проводят прямую до пересечения с кривой, откуда проводят параллельную оси абсцисс прямую до ее пересечения с осью ординат. Точка пересечения определяет суммарный выход искомого класса.

При построении суммарных характеристик в широком диапазоне размеров отверстий сит графики получаются сильно растянутыми. Чтобы избежать этого, графики строят в системе координат с полулографмическими (по оси абсцисс откладывают логарифмы размеров сит) или логарифмическими (по оси ординат также откладывают логарифмы суммарных выходов классов) шкалами. В отличие от обыкновенных кривых, полулогарифмические кривые левой ветвью не доходят до ординаты, так как ig0=-?.Построенные в логарифмической шкале кривые легко поддаются математической обработке.

Методы гранулометричского анализа почв разделяются на две группы: визуальные (их применяют в основном в полевых условиях) и более точные лабораторные. Визуальные методы основаны на определении гранулометрического состава по внешним признакам почвы. Среди них различают мокрый и сухой способы определения гранулометрического состава почв.

Сухой метод. Сухой комочек или щепотку почвы испытывают на ощупь, кладут на ладонь и тщательно растирают пальцами или раздавливают в ступке. Гранулометрический состав при этом определяют по состоянию сухого образца, ощущению при растирании и количеству песка (табл. 11).

Таблица 11 – Определение гранулометрического

состава сухим методом

Гранулометрический состав почвыСостояние сухого образца почвыОщущения при растирании сухого образца почвы
ПесокСыпучееСостоит почти исключительно из песка
СупесьКомочки слабые, легко раздавливаютсяПреобладает песок, мелкие частицы являются примесью
Суглинок легкий песчаныйКомочки разрушаются с небольшим усилиемПреобладают песчаные частицы, глины 20-30%
Суглинок легкий пылеватыйКомочки непрочныеПри растирании ощущается шероховатость, глинистые частицы втираются в кожу
Суглинок средний песчаныйАгрегаты разрушаются с трудом, намечается угловатость формГлины половина, песчаные частицы еще хорошо различимы
Суглинок средний пылеватыйАгрегаты раздавливаются с некоторым усилиемОщущение тонкой муки со слабо заметной шероховатостью
Суглинок тяжелый песчаныйАгрегаты плотные, угловатыеПесчаных частиц почти нет, преобладает глина
Суглинок тяжелый пылеватыйАгрегаты раздавливаются с трудом, имеют острые ребраОщущение тонкой муки, шероховатости нет
ГлинаАгрегаты очень плотные, угловатыеОчень тонкая однородная масса, песка нет

Мокрый метод. Образец растертой почвы увлажняют несколькими каплями воды и перемешивают до тестообразного состояния, при котором почва обладает наибольшей пластичностью. Далее почву раскатывают на ладони в шар, а затем в шнур толщиной 3мм и сворачивают его в кольцо диаметром 3см (табл. 12).

Таблица 12 – Определение гранулометрического состава

мокрым методом

Задание 1. На основании результатов гранулометрического состава (преподаватель выдает карточки) дать название (разновидность) каждого горизонта почвы. На основании полученных результатов оценить степень дифференциации профиля по гранулометрическому составу. Построить график, отражающий изменения гранулометрического состава по профилю почвы. Результаты работы отразить в виде таблицы.

Добавить комментарий